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SUMMARY

A multigrid convergence acceleration technique has been developed for solving both the Navier–Stokes and
turbulence transport equations. For turbulence closure a low-Reynolds-numberq–o turbulence model is
employed. To enable convergence, the stiff non-linear turbulent source terms have to be treated in a special way.
Further modifications to standard multigrid methods are necessary for the resolution of shock waves in
supersonic flows. An implicit LU algorithm is used for numerical time integration. Several ramped duct test
cases are presented to demonstrate the improvements in performance of the numerical scheme. Cases with strong
shock waves and separation are included. It is shown to be very effective to treat fluid and turbulence equations
with the multigrid method. A comparison with experimental data demonstrates the accuracy of theq–o
turbulence closure for the simulation of supersonic flows.# 1997 by John Wiley & Sons, Ltd. Int. j. numer.
methods fluids 24: 1019–1035, 1997.
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INTRODUCTION

During the last decade, multigrid methods have been widely used for convergence acceleration in a
broad range of flow problems.1–6They have proved to belong to the most efficient methods to reach a
steady state. While first employed for elliptic subsonic flows, this technique may also be applied to
supersonic and hypersonic flows.7–12 However, possible convergence accelerations for high-speed
flows seem to be smaller than those achieved for low-speed cases. Using central difference schemes,
the kind of artificial viscosity which is responsible for good shock capturing is also a crucial factor for
the efficient use of multigrid techniques.8 While the smoothing of iterative schemes on the finest grid
is only efficient within certain ranges of the high-frequency error components, low-frequency errors
may be damped on coarser meshes, leading to much better convergence rates. However, high-
frequency errors are obtained again by prolongating changes from coarse to fine grids. Therefore the
efficiency of multigrid schemes strongly depends on the ability of the driving numerical scheme to
rapidly damp out high-frequency errors.1 In hypersonic flows the efficiency of multigrid is due to the
use of larger time steps on coarser grids for damping the long waves while the basic principles of
multigrid work on the more dissipation-dominated short waves.8
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Numerical solutions of high-Reynolds-number turbulent flows are often necessary in practical
engineering. For turbulence closure, two-equation turbulence models offer a good compromise
between accuracy and generality in relation to the necessary computational time and memory. If low-
Reynolds-number turbulence models are employed, very fine grids are required for the near-wall
regions, making numerical solutions expensive and the use of multigrid techniques attractive. In this
case it is advantageous that the necessary number of iterations to reach a steady state be nearly
independent of the grid size if multigrid is used for convergence acceleration. However, the
turbulence transport equations involve very strongly non-linear source terms, making the use of
multigrid methods difficult. In addition, low-Reynolds-number models include exponential functions
for the simulation of the near-wall regions. If these terms are treated in the usual way, the solution
diverges in most cases. Therefore some authors do not update the turbulence transport equations on
coarse grids but only treat the fluid equations with the multigrid scheme.13,14 Alternatively, a two-
level multigrid15 may be used. Because the solution on the first grid is often very smooth, and the
solution on the second grid is driven only by the collected fine grid residuals, a two level multigrid is
less critical. However, we found that multilevel multigrid for both the fluid and turbulence transport
equations results in the smallest number of necessary multigrid cycles to reach a steady state and in
the smallest amount of necessary computer time. This requires a special treatment of the non-linear
turbulent source terms.

FLUID EQUATIONS AND NUMERICAL SCHEME

The investigation of high-speed turbulent flows with massive separation and shock wave–boundary
layer interaction requires the solution of the full Navier–Stokes equations which are given in two-
dimensional conservation form by
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where the conservative variable vector is

Q � �r; ru; rv; rE; rYi�
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: �2�

F andG are the inviscid andF
v

andG
v

the viscous fluxes in thex- andy-direction respectively. The
variables in equation (2) are the densityr, the velocity componentsu andv in thex- andy-direction
respectively, the total specific energyE and the species mass fractionsYi. Because the code has been
developed for the investigation of mixing processes, different species conservation equations are
included. The following air calculations require one species conservation equation for oxygen only,
while the second mass fraction of nitrogen is the complement to one. Further details may be found in
Reference 16.

The unsteady form of the governing equations is integrated in time by using an implicit finite
volume LU algorithm1,17,18. Jameson and Yoon19 have demonstrated the property for this driving
scheme of rapidly damping out high-frequency modes. This is a basic and necessary feature to be
used as a smoother for multigrid methods. Besides the inviscid Jacobians, simplified viscous
Jacobians are included in the implicit part of the scheme which are based on the thin layer Navier–
Stokes equations. This is done for both fluid and turbulence transport equations. The LU scheme
results in block diagonal operators and is fully vectorizable also in the implicit part. The turbulence
transport equations are solved in a loosely coupled way with the fluid motion. After linearizing the
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flux vectors and splitting the inviscid Jacobians to achieve diagonal dominance,17 the resulting
numerical scheme may be symbolically written as

�D � L � U�DQn�1
� ÿDtR; �3�

whereD;L andU are a diagonal, a lower triangular and an upper triangular matrix respectively andR
stands for the residual. The implicit operator can be approximately factored as

�D � L�Dÿ1
�D � U�DQn�1

� ÿDtR �4�

and may be solved by the following two steps:17

�D � L�D �Q � ÿDtR;

�D � U�DQn�1
� DD �Q;

Qn�1
� Qn

� DQn�1
:

�5�

Local time stepping is used to enhance convergence to a steady state. The fluid and turbulence
transport equations are integrated with the same time step. In many cases the multigrid also allows for
larger time steps than the single-grid solution without reaching a stability limit. The following results
have been obtained by chosing the same local CFL numbers (between 10 and 20) for all single-grid
and multigrid calculations.

As the right-hand side (RHS) is discretized with central differences, second- and fourth-order
artificial viscosity is added to reduce oscillations near shock waves and to enable convergence to
machine accuracy.20 This technique is fairly standard; however, a matrix dissipation is employed on
the finest grid to reduce the amount of added artificial viscosity.20,21 While the addition of second-
order viscosity is ruled by a pressure-based sensor on the finest grid, only second differences with
constant coefficients are added on the coarse grids.5 With a constant coefficient coarse grid damping,
the residuals are kept smooth, limiting high-frequency errors for the prolongation of coarse grid
corrections to fine grids. Owing to highly stretched grids in the near-wall region, an anisotropic
scaling is necessary for the eigenvalues forming the dissipation matrix.21 The added artificial
viscosity allows one at shock waves to blend over from a second-order central difference scheme to a
first-order upwind scheme.20 In References 7–9 it is shown that the choice of an appropriate shock
sensor enables convergence for hypersonic flows without further modifications at shock waves. A
similar dissipation is used in the present paper which is described later in more detail.

THE q–o TURBULENCE MODEL

In recent years, two-equation turbulence closures have been increasingly employed which use
transport equations for a turbulent length and velocity scale. If the turbulence transport equations are
integrated directly to the wall, low-Reynolds near-wall corrections are necessary. In contrast with
better-behaved wall functions, they are in most cases numerically very stiff. However, low-Reynolds-
number models offer a more general application, in particular if flow separation or complex
geometries have to be described. If integrated to the wall, the viscous sublayer has to be resolved.
Thereforey�-values for the first cells away from the wall should be below unity. Besides a strong
increase in the number of necessary grid points, this also leads to highly stretched grids in the near-
wall region. For time integration the maximum allowable time step depends on the mesh size of the
computational grid. Hence very fine grids in the near-wall regimes require small time steps and
increase the number of iterations to reach a steady state. High cell aspect ratios may also lead to a
degradation in the damping properties of the driving scheme22 which can reduce the efficiency of
multigrid techniques.

MULTIGRID CONVERGENCE ACCELERATION 1021

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 1019–1035 (1997)



If multigrid methods are employed, the strongly non-linear source terms in the boundary layer or
within separated regions cause problems which may prevent the solution from converging. Therefore
we restricted parts of these terms directly from fine to coarse grids where they were held constant
instead of being recalculated.

At described above, most low-Reynolds-number models become numerically extremely stiff in the
case of separation or within boundary layers. Therefore we have chosen Coakley’sq–o model23,24

which behaves much better in such cases and offer high numerical stability.16,18 Similar properties
are observed for thek–o model25 developed by Wilcox26 or thek–t model of Spezialeet al.25 The
turbulent transport variables for theq–o model areq �

p

k ando � E=k, wherek is the turbulent
kinetic energy andE is its rate of dissipation. While the asymptotic behaviour fork at solid walls is
� y2, for q it is � y. In addition, the use ofq instead ofk eliminates the need for a low-Reynolds-
number dissipation term to balance molecular diffusion.23 Together with thead hoc boundary
condition foro at solid walls,@o=@n � 0, and the special form of the low-Reynolds-number terms,
much of the numerical stiffness associated with low-Reynolds-number turbulence models is
eliminated, being a good presumption for the use of multigrid techniques. A further advantage of the
q–o model is the very convenient possibility of flow field initialization with constant freestream
values. Even in cases with wall slot injections into supersonic air flows and massive separation in
front of and behind the injector, convergence was achieved by this treatment.16 For the two-
dimensional case the field equations for theq–o model are given by
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andmm andmt are the molecular and the turbulence viscosity respectively. With the strain invariant
defined by
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and the divergence of the velocity field defined by
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INT. J. NUMER. METHODS FLUIDS, VOL.24: 1019–1035 (1997) # 1997 by John Wiley & Sons, Ltd.



the production rate of turbulent kinetic energy is defined byPk � mtS ÿ

2
3 rkD. For modelling the

low-Reynolds-number regions, Coakley and Huang24 introduced the damping functions

Dq � 1 ÿ exp�ÿ0�022Rq� and Co1 � 0�5Dq � 0�055 �12�

which depend on the turbulent Reynolds number

Rq � rqlw=mm: �13�

Equation (13) requires the distancelw from the cell centres to the nearest wall. The basic constants of
this model are

Cq1 � 0�5; Co2 � 0�833; Co3 �
2
3 ; sq � 0�8; so � 2�0; Cm � 0�09: �14�

Finally the eddy viscosity is calculated by

mt � CmDqrq2
=o: �15�

The boundary conditions at solid walls areq � 0 andon � 0, wheren is the direction normal to
the solid wall. For inflow conditions we used calculated fully developed turbulent inlet profiles for all
variables which are held constant. At the exit the primitive variables are extrapolated. Some
modifications of this model have been described and investigated in Reference 16. Our main purpose
in this paper was the investigation of multigrid in conjunction with a low-Reynolds-number
turbulence closure. Therefore the standardq–o model is employed without investigating the
influence of modelling corrections on the numerical accuracy.

THE MULTIGRID METHOD

For non-linear problems the full approximation storage (FAS) scheme of Brandt27,28 is the basis for
most multigrid methods. In this paper a version for implicit approximately factored schemes is
employed which was first presented by Jameson and Yoon.1 Coarse grids are formed by eliminating
every other grid line on the previous finer mesh. In this way a hierarchy of up to four levels
L � h; 2h; 4h; 8h of grids is created, whereh is the grid size of the finest mesh. A V-cycle with one or
two coarse grid iterations is used, starting on the finest grid. In most investigated cases a second
coarse grid iteration led only to a small reduction in the number of required multigrid cycles and
sometimes even increased the necessary CPU time. Equation (3) may be rewritten in the form

F�Qk
�DQk

� R�Qk
�; �16�

whereF is the implicit operator,R is the residual andk indicates the level of the grid. Within one
FAS V-cycle the following steps are performed.

Step 1.One relaxation sweep is carried out on the finest grid (k � 1) according to equation (16) and
the solution is updated.

Step 2.The solution and the recalculated residuals are transferred from the finest to the next coarse
grid by

Qk�1
0 � Ik�1

k Qk
; Rk�1

c � rk�1
k R�Qk

�; �17�
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where the subscripts ‘0’ and ‘c’ stand for the initialized coarse grid solution and the collected
residuals respectively.Ik�1

k andrk�1
k are restriction operators from fine to coarse grids. Now fork � 1

a forcing function is defined by1

Pk�1
� Rk�1

c ÿ R�Qk�1
0 �; �18�

which is the difference between the transferred residuals from the fine grid and the new calculated
coarse grid residuals for which the transferred variablesQk�1

0 are used. The residual for the coarse
grid correction is obtained as the sum of the forcing function and the calculated residual,

Tk�1
� R�Qk�1

� � Pk�1
; �19�

and the coarse grid solution is updated using

F�Qk�1
�DQk�1

� Tk�1
: �20�

The first iteration on the second grid is only driven by the collected fine grid residuals. One or more
iterations may be performed.

Step 3.Again the solution and the recalculated residuals are transferred to the next coarser grid
according to equation (17), but the forcing functions fork > 1 are now calculated by

Pk�1
� rk�1

k T�Qk
� ÿ R�Qk�1

0 �: �21�

Using equation (19), the residual error at the new levelk � 1 is calculated and the solution updated.
Step 3 is repeated successively for every additional level until the coarsest mesh is reached. While the
conservative variables are restricted from fine to coarser meshes, the primitive variables, pressure,
temperature and gas properties are calculated anew from these transferred values on every coarse
grid. The boundary conditions are treated in the same way on all grid levels.

Step 4.Finally the obtained coarse grid corrections are prolongated back to the finer grids by

Qk
new � Qk

� pk
k�1�Q

k�1
new ÿ Qk�1

0 �; �22�

wherepk
k�1 is a prolongation operator from coarse to fine grids. No additional relaxation sweeps are

performed on the coarse grids after each prolongation step.

Restriction and prolongation

For the cell-centred finite volume scheme used, the restriction operator for the conservative
variables is defined according to Reference 1 by

Ik�1
k Qk
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O
k�1

P4

l�1
O

k
l Qk

l ; �23�

whereO is the corresponding cell area. In this paper, full coarsening is used and always four fine grid
volumes are collected to form one coarse grid volume. The residualsR and T are restricted by a
simple addition of the four fine grid values:

rk�1
k Rk

�

P4

l�1
Rk

l ; rk�1
k Tk

�
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l�1
Tk

l : �24�

Some modifications are necessary if supersonic or hypersonic flows are to be treated. Because
central differences are used for space discretization, artificial viscosity is necessary to reduce
oscillations near shock waves.20,21A pressure-based sensor locates shock waves within the flow field
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where second differences are added for better shock resolution. Swanson and Turkel20 proposed a
sensor based on the van Leer limiter which is first-order upwind near shocks and has total-
diminishing (TVD) properties. In the following calculations we use an arithmetic blend (w � 0�5)
between the original29 non-TVD (w � 1) and the TVD (w � 0) sensor

n
x

i; j �
jpi�1; j ÿ 2pi; j � piÿ1; jj

�1 ÿ w��jpi�1; j ÿ pi; jj � jpi; j ÿ piÿ1; jj� � w�pi�1; j � 2pi; j � piÿ1; j�
; �25�

which is given here for thex-direction. Similar sensors are used by other authors for multigrid
calculations in hypersonic flows.8–10 In addition, fourth-order viscosity is added in the smooth flow
regions to prevent odd–even oscillations and to allow convergence to machine accuracy. The fourth-
order dissipation is switched off near shock waves.

Because this kind of dissipation and a central restriction operator still allow for upwind
propagation of disturbances, the residuals transferred from fine to coarse grids are damped in the
vicinity of shock waves.10 A different but more complicated possibility would be a characteristic
restriction operator as proposed by Leclercq and Stoufflet30 which requires computationally
expensive matrix–vector multiplications. To locate regions where the transferred residuals should be
reduced, shock sensors in thex- andZ-directions are used,10

k
k
i; j � Ck max�nxi; j; n

x

iÿ1; j; n
x

i�1; j; n
Z

i; j; n
Z

i; jÿ1; n
Z

i; j�1�; �26�

and equation (24) is replaced by
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k Tk
�

P4

l�1
Tk

l max�0; 1 ÿ k
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On the finest grid the pressure distribution is normally smooth and even at shock waves the values
of ki; j are relatively small if the grid is fine enough and the shock wave is not too strong. This
behaviour changes on coarse grids where stronger pressure gradients occur, leading to higher values
of ki; j. Therefore it may be advantageous to take different values ofCk for the different grid levelsk.
For coarser grids, smaller values allow more information to pass and allow better convergence rates.
In addition, it is important to notice that the transferred residuals are multiplied by the damping factor
at every grid transfer, leaving less information on successively coarser grids.

With an implicit scheme, information is propagated through the shock wave even ifRk becomes
zero directly at the shock. However, corrections obtained near shock waves and prolongated to finer
grids may be too large in some phases of the iteration process and may lead to divergence of the
calculation. This effect was described in Reference 10 and is also observed in our calculations.
Therefore, in addition to the above-described reduction of the restricted residuals, the local time steps
for the coarse grid calculations are reduced at shock waves in dependence on the value ofki; j.

For the prolongation of corrections from coarse to fine grids, bilinear interpolation is used. Similar
to the restriction process, such a central prolongation operator may allow for unphysical upwind
propagation of disturbances in supersonic flows. In our first test case this was less critical because a
very fine grid was used. Machine accuracy could be achieved with a central prolongation operator.
However, for calculations with coarser grids we required an upwind prolongation which was used
only in supersonic flow regions. The contravariant velocity between two coarse grid cell centres is
used as a sensor to switch between upwind and central prolongation if supersonic or subsonic flow
exists between those two points. Again Leclercq and Stoufflet30 describe a more accurate
characteristic prolongation. However, the computational effort is much larger for such a treatment
and good results have been obtained with the described simple switching.
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The turbulent source terms

If the turbulent source vector described in equation (9) is recalculated with restricted coarse grid
variables, the strong non-linear character of some included terms may lead to divergence of the
calculation. This is especially the case for massively separated flows which are associated with strong
gradients in the flow and turbulence variables. To preserve the accuracy of the source term, it is
possible to directly pass down these values from fine to coarse grids without a new calculation. Such
a method conserves the turbulent variables. If an implicit numerical scheme is used, it is necessary to
form a source Jacobian on every grid according to the source vector. Especially for the low-
Reynolds-number terms it may be difficult to find a formulation which enables rapid convergence if
the whole source terms is passed down. Therefore another possibility is chosen which requires no
modification for the calculation of the turbulent source Jacobian on coarse grids. The strongest non-
linear terms of the source vector given in equation (9) are the production ratePk which is formed byS
andD and the exponential functionDq. If these terms are recalculated on the coarse grids, their non-
linear behaviour may destroy convergence. Therefore they are restricted in the way as the
conservative variables from fine to coarser grids, i.e.

Sk�1
� Ik�1

k Sk
; Dk�1

� Ik�1
k Dk

; Dk�1
q � Ik�1

k Dk
q; �28�

and are held constant for every coarse grid iteration. The turbulent source Jacobians are calculated
with the frozen restricted values ofS;D and Dq. It is advantageous that all terms which are held
constant on the coarse grids be independent ofq ando. The turbulence variables change during the
multigrid cycle on the coarse grids, while approximations are used for the strong non-linear parts of
the source vector which are determined from exact fine grid values. While is important to treatSand
Dq in the above-described way,D is less critical and may also be recalculated on the coarse grids.
However, for simplicity we used constant values for all three terms and achieved good convergence
rates even for complicated flow fields. The source Jacobian for theq–o model may be found in
Reference 18.

RESULTS AND DISCUSSION

Several test cases have been achieved to investigate the convergence acceleration of the described
multigrid scheme and to demonstrate the accuracy of the low-Reynolds-numberq–o model for the
simulation of attached and separated supersonic flows. In all cases, significant grid clustering is
necessary to resolve the viscous sublayers near solid walls, leading to highly stretched grids with cell
aspect ratios up to 500. While the first test case is only used to investigate the convergence properties
of the numerical scheme, a comparison with experimental data has been made for a series of ramp
flows, from which the most complicated one is presented.

Ramped duct without separation

A simple ramped duct test case serves to investigate the convergence properties of the above-
described multigrid method. Figure 1 shows the geometry and inflow conditions, which are the same
as those used for the investigation of supersonic combustion problems.31 A small fully developed
turbulent boundary layer with a boundary layer thicknessd � 0�3 mm is used at the inlet. This
assures that no separation is induced by the shock wave at the ramp. Because the computational grid
with 120680 volumes is very fine for the small geometry, owing to its good resolution, this test case
is less critical than the following ones. A constant value ofCk

� 1 is used (see equation (26)) for all
grids, leading at stationary conditions to maximum values forki; j of 0�0583, 0�1121 and 0�1771 for
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the first, second and third grids respectively. For this case it was not necessary to reduce the coarse
grid time steps at the shock or to use the upwind prolongation. The computational grid is refined near
the lower and upper walls and ally�-values for the first cell centres away from the wall are below
unity. All converged single-grid and multigrid solutions are identical.

The calculations presented in this paper have been performed on a Cray C90 computer with a
fully vectorized code. Because of the short vector lengths on coarse grids, the necessary computer
time increases more strongly than the theoretically achievable value if the multigrid method is
employed. The implicit part of the LU scheme which is vectorized along the diagonals of the
computational domain is at a special disadvantage, because the maximum vector length is given by
the smallest number of cells in both co-ordinate directions. For three-dimensional calculation the
vectorization may be performed in planes, which offers much longer vector lengths and improves
the performance rate.5 In addition, the vector length increases quadratically instead of linearly
starting from one corner of the computational domain until the maximal vector length is reached.
Therefore still better accelerations may be expected for three-dimensional calculations or if a scalar
computer is used.

Figures 2 and 3 show the convergence histories for various calculations. The absolute, averaged,
normalized residual errors of the continuity equation are given for four different calculations as a
function of the number of multigrid cycles or work units respectively. One work unit represents the
computational effort for one fine grid iteration. The necessary number of iterations as well as the
number of work units is strongly reduced by the four-level V-cycle multigrid method. In order to
demonstrate the advantage of treating the turbulence equations with the multigrid method, two

Figure 1. Geometry and inflow conditions for ramped duct

Figure 2. Convergence history (multigrid cycles) for density residual
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different calculations are performed with four levels and one coarse grid iteration. While in the first
simulation the multigrid method is used only for the fluid equations in the second, it serves for both
the fluid and turbulence transport equations. From these results (see Figures 2 and 3) it is obvious that
further improvements are achieved if all equations are treated with the multigrid technique. If may
also be seen from these figures that in this case a second coarse grid iteration only achieves a very
small reduction in the number of multigrid cycles, while the number of work units is even increased.

Figures 4 and 5 show the convergence histories of the absolute, averaged, normalized residual
errors of theq-equation. The advantage of treating the turbulence transport equations with the
multigrid method becomes still clearer from these figures. While machine accuracy is reached at the
same number of work units (2750) for ther- and theq-residual if all equations are treated with the
multigrid, the convergence ofq is lagged if only the fluid equations are treated. In this case the
density residual reaches machine accuracy after 4750 work units, while 5700 are necessary for theq-
residual. At the beginning of the iteration the number of work units is even increased by the multigrid
technique in comparison with the single-grid solution if only the fluid equations are treated.

Figure 3. Convergence history (work units) for density residual

Figure 4. Convergence history (multigrid cycles) forq-residual
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A convergence acceleration with a factor of about 3�5 concerning the number of necessary work
units is achieved when the four-level V-cycle multigrid is used for the fluid and turbulence transport
equations. It will be shown in the next subsection that still stronger accelerations are possible in the
case of massive separation, where the single-grid solutions slow down.

24� ramp with separation

The following test case was performed experimentally by Settles and co-workers32–34and is often
used for the investigation of turbulence models because of its good documentation. This case is more
challenging to the multigrid scheme as well as to the turbulence closure than the previous one
because of the strong shock wave–boundary layer interactions and the associated flow field
separation. The geometry and computational grid for the flow over a planar 24� compression corner
as well as the freestream inflow conditions given in Figure 6. The inflow boundary conditions have
been calculated by the same Navier–Stokes code to match the experimentally measured32 boundary
layer thicknessd � 2�1 cm, displacement thicknessd* � 0�602 cm and momentum thickness
y � 0�114 cm as were as possible. These profiles also serve as initial conditions throughout the
computational domain. Four different compression corners have been investigated experimentally
(8�, 16�, 20� and 24�). While calculations have been performed for all four ramp angles, results will
be presented only for the 24� ramp where the largest separation zone occurs. However, even though
not shown in this paper, the convergence rates as well as the overall agreement with the experimental
data are also very good for the other ramp flows. Adiabatic wall boundary conditions are assumed for
all calculations. The computational grid (1526 80 volumes) shown in refined near the corner and at
the solid wall and the distance from the first cell centre to the wall is 0�561076 m, leading toy�-
values below 0�6 for all near-wall cell centres. In the mean the flow was found in experiment to
separate atx � ÿ34 mm and to reattach atx � 11 mm.35

Figures 7 and 8 show the performance parameters for this calculation. It may be seen that the fluid
and turbulence transport equations converge at nearly the same rate. Again a strong reduction in the
necessary number of multigrid cycles or work units is demonstrated. Fewer than 5000 multigrid
cycles are required to achieve machine accuracy in the case of the multigrid V-cycle with two coarse
grid iterations. For the 8�, 16� and 20� ramps the convergence rates are a little bit better still. The
necessary CPU time on a single processor of the Cray C90 is about 16ms per grid point per iteration.
For this pure air calculation a multicomponent algorithm is disadvantageous as it requires

Figure 5. Convergence history (work units) forq-residual
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complicated gas property calculations. In comparison with the first test case, now a second coarse
grid iteration achieves a clearly visible improvement in the convergence rates. Again a constant value
of Ck

� 1 is used for all grids, leading at stationary conditions to maximum values forki; j of 0�103,
0�252 and 0�346 for the first, second and third grids respectively. In addition, the CFL number is also
reduced in regions with strong pressure gradients, leading to minimum multiplicators of 0�924, 0�784
and 0�699 for the time step size on the second, third and fourth grids respectively. It is also possible to
achieve convergence without reducing the time step size but by increasingCk . The convergence rates

Figure 6. Geometry, inflow conditions and computational grid (152680)

Figure 7. Convergence history (multigrid cycles) for density residual andq-residual
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differ only slightly. Both methods are stable and simple to use. There is no influence on the stationary
solution if Ck is chosen too large, but the convergence slows down.

Figure 9 shows a comparison between the experimental (two sets of measurements)24,31 and
computed wall static pressures. The overall agreement between experimental and computation is
quite good. The computational rise in pressure due to the separation shock is somewhat steeper than
in the experiment. The computed and experimentally determined skin friction coefficients are plotted
in Figure 10. While the computed point of separation agrees very well with the measured value, the
point of reattachment is further downstream for the calculation. Additionally, the calculated rise in
skin friction at the beginning of and after reattachment is steeper than in the experiment. The wrongly
predicted point of reattachment may also be seen in the velocity profiles which are given in Figure 11
for eight differentx-locations. The profiles are always plotted vertical to the ramp surface. Substantial
difference occur especially within the separated region. Finally, Figures 12 and 13 show the pressure
distribution andq-distribution within the computational domain respectively. There is a strong
production of turbulent kinetic energy near the ramp and within the separated region. The maximum

Figure 8. Convergence history (work units) for density residual andq-residual

Figure 9. Experimental and computed surface static pressure distribution

MULTIGRID CONVERGENCE ACCELERATION 1031

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 1019–1035 (1997)



Figure 10. Experimental and computed surface skin friction distributioncf � 2tW=r
1

u2
1

Figure 11. Experimental and computed velocity profiles at variousx-locations
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Figure 12. Pressure contours (bar) for computational domain�D � 0�02 bar)

Figure 13. Contours ofq (m s71) for computational domain (D � 3 m s71)
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values are obtained at aboutx � 20 mm, decreasing again further downstream towards a fully
turbulent boundary layer profile.

Despite the described differences between experiment and calculation, the overall agreement is
still satisfactory for a two-equation turbulence closure, as may also be seen from comparison with the
results of other authors.24,26

CONCLUSIONS

The multigrid technique was successfully introduced to accelerate convergence for supersonic flows
using aq–o low-Reynolds-number turbulence model. It has been shown that it is advantageous to use
the multigrid technique for both the fluid and turbulence transport equations. A method for treating
the non-linear turbulent source terms is presented which leads to a simple coarse grid source Jacobian
approximation necessary for implicit schemes. In addition, restriction and prolongation between the
different grid levels requires a special treatment near shock waves to enable convergence. Theq–o
model has proven to be numerically very stable in conjunction with the multigrid technique and a
comparison with experimental results has shown good overall agreement.
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